skip to main content


Search for: All records

Creators/Authors contains: "Ferreras, Ignacio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a study aimed at understanding the physical phenomena underlying the formation and evolution of galaxies following a data-driven analysis of spectroscopic data based on the variance in a carefully selected sample. We apply principal component analysis (PCA) independently to three subsets of continuum-subtracted optical spectra, segregated into their nebular emission activity as quiescent, star-forming, and active galactic nuclei (AGNs). We emphasize that the variance of the input data in this work only relates to the absorption lines in the photospheres of the stellar populations. The sample is taken from the Sloan Digital Sky Survey (SDSS) in the stellar velocity dispersion range 100–150 km s−1, to minimize the ‘blurring’ effect of the stellar motion. We restrict the analysis to the first three principal components (PCs) and find that PCA segregates the three types with the highest variance mapping SSP-equivalent age, along with an inextricable degeneracy with metallicity, even when all three PCs are included. Spectral fitting shows that stellar age dominates PC1, whereas PC2 and PC3 have a mixed dependence of age and metallicity. The trends support – independently of any model fitting – the hypothesis of an evolutionary sequence from star formation to AGN to quiescence. As a further test of the consistency of the analysis, we apply the same methodology in different spectral windows, finding similar trends, but the variance is maximal in the blue wavelength range, roughly around the 4000 Å break.

     
    more » « less
  2. Abstract

    The inverse problem of extracting the stellar population content of galaxy spectra is analysed here from a basic standpoint based on information theory. By interpreting spectra as probability distribution functions, we find that galaxy spectra have high entropy, thus leading to a rather low effective information content. The highest variation in entropy is unsurprisingly found in regions that have been well studied for decades with the conventional approach. We target a set of six spectral regions that show the highest variation in entropy – the 4000 Å break being the most informative one. As a test case with real data, we measure the entropy of a set of high-quality spectra from the Sloan Digital Sky Survey, and contrast entropy-based results with the traditional method based on line strengths. The data are classified into star-forming (SF), quiescent (Q), and active galactic nucleus (AGN) galaxies, and show – independently of any physical model – that AGN spectra can be interpreted as a transition between SF and Q galaxies, with SF galaxies featuring a more diverse variation in entropy. The high level of entanglement complicates the determination of population parameters in a robust, unbiased way, and affects traditional methods that compare models with observations, as well as machine learning (especially deep learning) algorithms that rely on the statistical properties of the data to assess the variations among spectra. Entropy provides a new avenue to improve population synthesis models so that they give a more faithful representation of real galaxy spectra.

     
    more » « less
  3. ABSTRACT We have entered a new era where integral-field spectroscopic surveys of galaxies are sufficiently large to adequately sample large-scale structure over a cosmologically significant volume. This was the primary design goal of the SAMI Galaxy Survey. Here, in Data Release 3, we release data for the full sample of 3068 unique galaxies observed. This includes the SAMI cluster sample of 888 unique galaxies for the first time. For each galaxy, there are two primary spectral cubes covering the blue (370–570 nm) and red (630–740 nm) optical wavelength ranges at spectral resolving power of R = 1808 and 4304, respectively. For each primary cube, we also provide three spatially binned spectral cubes and a set of standardized aperture spectra. For each galaxy, we include complete 2D maps from parametrized fitting to the emission-line and absorption-line spectral data. These maps provide information on the gas ionization and kinematics, stellar kinematics and populations, and more. All data are available online through Australian Astronomical Optics Data Central. 
    more » « less